Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 3(3): 715-735, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006753

RESUMO

Biocatalysis is a highly valued enabling technology for pharmaceutical research and development as it can unlock synthetic routes to complex chiral motifs with unparalleled selectivity and efficiency. This perspective aims to review recent advances in the pharmaceutical implementation of biocatalysis across early and late-stage development with a focus on the implementation of processes for preparative-scale syntheses.

2.
Angew Chem Int Ed Engl ; 61(51): e202214610, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36282507

RESUMO

Flavin-dependent halogenases (FDHs) natively catalyze selective halogenation of electron rich aromatic and enolate groups. Nearly all FDHs reported to date require a separate flavin reductase to supply them with FADH2 , which complicates biocatalysis applications. In this study, we establish that the single component flavin reductase/flavin dependent halogenase AetF catalyzes halogenation of a diverse set of substrates using a commercially available glucose dehydrogenase to drive its halogenase activity. High site selectivity, activity on relatively unactivated substrates, and high enantioselectivity for atroposelective bromination and bromolactonization was demonstrated. Site-selective iodination and enantioselective cycloiodoetherification was also possible using AetF. The substrate and reaction scope of AetF suggest that it has the potential to greatly improve the utility of biocatalytic halogenation.


Assuntos
Alcenos , Oxirredutases , Oxirredutases/metabolismo , Halogenação , Flavinas/metabolismo , Biocatálise
3.
J Am Chem Soc ; 143(18): 7114-7123, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33909977

RESUMO

A cytochrome c heme protein was recently engineered to catalyze the formation of carbon-silicon bonds via carbene insertion into Si-H bonds, a reaction that was not previously known to be catalyzed by a protein. High chemoselectivity toward C-Si bond formation over competing C-N bond formation was achieved, although this trait was not screened for during directed evolution. Using computational and experimental tools, we now establish that activity and chemoselectivity are modulated by conformational dynamics of a protein loop that covers the substrate access to the iron-carbene active species. Mutagenesis of residues computationally predicted to control the loop conformation altered the protein's chemoselectivity from preferred silylation to preferred amination of a substrate containing both N-H and Si-H functionalities. We demonstrate that information on protein structure and conformational dynamics, combined with knowledge of mechanism, leads to understanding of how non-natural and selective chemical transformations can be introduced into the biological world.


Assuntos
Citocromos c/metabolismo , Hidrogênio/metabolismo , Metano/análogos & derivados , Nitrogênio/metabolismo , Silício/metabolismo , Biocatálise , Citocromos c/química , Hidrogênio/química , Metano/química , Metano/metabolismo , Estrutura Molecular , Nitrogênio/química , Silício/química
4.
Proc Natl Acad Sci U S A ; 116(18): 8852-8858, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30979809

RESUMO

To reduce experimental effort associated with directed protein evolution and to explore the sequence space encoded by mutating multiple positions simultaneously, we incorporate machine learning into the directed evolution workflow. Combinatorial sequence space can be quite expensive to sample experimentally, but machine-learning models trained on tested variants provide a fast method for testing sequence space computationally. We validated this approach on a large published empirical fitness landscape for human GB1 binding protein, demonstrating that machine learning-guided directed evolution finds variants with higher fitness than those found by other directed evolution approaches. We then provide an example application in evolving an enzyme to produce each of the two possible product enantiomers (i.e., stereodivergence) of a new-to-nature carbene Si-H insertion reaction. The approach predicted libraries enriched in functional enzymes and fixed seven mutations in two rounds of evolution to identify variants for selective catalysis with 93% and 79% ee (enantiomeric excess). By greatly increasing throughput with in silico modeling, machine learning enhances the quality and diversity of sequence solutions for a protein engineering problem.


Assuntos
Técnicas de Química Combinatória/métodos , Evolução Molecular Direcionada , Aprendizado de Máquina , Oxigenases/genética , Rhodothermus/enzimologia , Bibliotecas de Moléculas Pequenas , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Oxigenases/metabolismo , Conformação Proteica
5.
Proc Natl Acad Sci U S A ; 115(28): 7308-7313, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29946033

RESUMO

Recently, heme proteins have been discovered and engineered by directed evolution to catalyze chemical transformations that are biochemically unprecedented. Many of these nonnatural enzyme-catalyzed reactions are assumed to proceed through a catalytic iron porphyrin carbene (IPC) intermediate, although this intermediate has never been observed in a protein. Using crystallographic, spectroscopic, and computational methods, we have captured and studied a catalytic IPC intermediate in the active site of an enzyme derived from thermostable Rhodothermus marinus (Rma) cytochrome c High-resolution crystal structures and computational methods reveal how directed evolution created an active site for carbene transfer in an electron transfer protein and how the laboratory-evolved enzyme achieves perfect carbene transfer stereoselectivity by holding the catalytic IPC in a single orientation. We also discovered that the IPC in Rma cytochrome c has a singlet ground electronic state and that the protein environment uses geometrical constraints and noncovalent interactions to influence different IPC electronic states. This information helps us to understand the impressive reactivity and selectivity of carbene transfer enzymes and offers insights that will guide and inspire future engineering efforts.


Assuntos
Proteínas de Bactérias/química , Evolução Molecular Direcionada , Metano/análogos & derivados , Porfirinas/química , Rhodothermus/enzimologia , Transferases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Metano/química , Metano/metabolismo , Porfirinas/genética , Porfirinas/metabolismo , Rhodothermus/genética , Transferases/genética , Transferases/metabolismo
6.
ACS Cent Sci ; 4(3): 372-377, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29632883

RESUMO

Developing catalysts that produce each stereoisomer of a desired product selectively is a longstanding synthetic challenge. Biochemists have addressed this challenge by screening nature's diversity to discover enzymes that catalyze the formation of complementary stereoisomers. We show here that the same approach can be applied to a new-to-nature enzymatic reaction, alkene cyclopropanation via carbene transfer. By screening diverse native and engineered heme proteins, we identified globins and serine-ligated "P411" variants of cytochromes P450 with promiscuous activity for cyclopropanation of unactivated alkene substrates. We then enhanced their activities and stereoselectivities by directed evolution: just 1-3 rounds of site-saturation mutagenesis and screening generated enzymes that transform unactivated alkenes and electron-deficient alkenes into each of the four stereoisomeric cyclopropanes with up to 5,400 total turnovers and 98% enantiomeric excess. These fully genetically encoded biocatalysts function in whole Escherichia coli cells in mild, aqueous conditions and provide the first example of enantioselective, intermolecular iron-catalyzed cyclopropanation of unactivated alkenes.

7.
Science ; 354(6315): 1048-1051, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27885032

RESUMO

Enzymes that catalyze carbon-silicon bond formation are unknown in nature, despite the natural abundance of both elements. Such enzymes would expand the catalytic repertoire of biology, enabling living systems to access chemical space previously only open to synthetic chemistry. We have discovered that heme proteins catalyze the formation of organosilicon compounds under physiological conditions via carbene insertion into silicon-hydrogen bonds. The reaction proceeds both in vitro and in vivo, accommodating a broad range of substrates with high chemo- and enantioselectivity. Using directed evolution, we enhanced the catalytic function of cytochrome c from Rhodothermus marinus to achieve more than 15-fold higher turnover than state-of-the-art synthetic catalysts. This carbon-silicon bond-forming biocatalyst offers an environmentally friendly and highly efficient route to producing enantiopure organosilicon molecules.


Assuntos
Proteínas de Bactérias/química , Biocatálise , Carbono/química , Citocromos c/química , Evolução Molecular Direcionada/métodos , Compostos de Organossilício/síntese química , Rhodothermus/enzimologia , Silício/química , Proteínas de Bactérias/genética , Citocromos c/genética , Ligação de Hidrogênio , Metano/análogos & derivados , Metano/química , Especificidade por Substrato
8.
J Am Chem Soc ; 138(38): 12527-33, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27573353

RESUMO

Following the recent discovery that heme proteins can catalyze the cyclopropanation of styrenyl olefins with high efficiency and selectivity, interest in developing new enzymes for a variety of non-natural carbene transfer reactions has burgeoned. The fact that diazo compounds and other carbene precursors are known mechanism-based inhibitors of P450s, however, led us to investigate if they also interfere with this new enzyme function. We present evidence for two inactivation pathways that are operative during cytochrome P450-catalyzed cyclopropanation. Using a combination of UV-vis, mass spectrometry, and proteomic analyses, we show that the heme cofactor and several nucleophilic side chains undergo covalent modification by ethyl diazoacetate (EDA). Substitution of two of the affected residues with less-nucleophilic amino acids led to a more than twofold improvement in cyclopropanation performance (total TTN). Elucidating the inactivation pathways of heme protein-based carbene transfer catalysts should aid in the optimization of this new biocatalytic function.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Catálise , Coenzimas , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/classificação , Escherichia coli/metabolismo , Heme , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica
9.
ACS Catal ; 6(11): 7810-7813, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-28286694

RESUMO

Extending the scope of biocatalysis to important non-natural reactions such as olefin cyclopropanation will open new opportunities for replacing multi-step chemical syntheses of pharmaceutical intermediates with efficient, clean, and highly selective enzyme-catalyzed processes. In this work, we engineered the truncated globin of Bacillus subtilis for the synthesis of a cyclopropane precursor to the antithrombotic agent ticagrelor. The engineered enzyme catalyzes the cyclopropanation of 3,4-difluorostyrene with ethyl diazoacetate on a preparative scale to give ethyl-(1R, 2R)-2-(3,4-difluorophenyl)-cyclopropanecarboxylate in 79% yield, with very high diastereoselectivity (>99% dr) and enantioselectivity (98% ee), enabling a single-step biocatalytic route to this pharmaceutical intermediate.

10.
J Mol Biol ; 427(17): 2748-56, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26191773

RESUMO

Whereas ubiquitin-dependent degrons have been characterized in some detail, how proteins may be targeted to ubiquitin-independent proteasomal degradation remains unclear. Here we show that IκBα contains an ubiquitin-independent degron whose activity is portable to heterologous proteins such as the globular protein GFP (green fluorescent protein) via a proteasome-dependent, ubiquitin-independent, non-lysosomal pathway. The ubiquitin-independent degradation signal resides in an 11-amino-acid sequence, which is not only sufficient but also required for IκBα's short half-life. Finally, we show that this degron's activity is regulated by the interaction with NFκB, which controls its solvent exposure, and we demonstrate that this regulation of the degron's activity is critical for IκBα's signaling functions.


Assuntos
Repetição de Anquirina/genética , Proteínas I-kappa B/metabolismo , Transdução de Sinais/genética , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Células 3T3 , Sequência de Aminoácidos , Animais , Linhagem Celular , Cloroquina/farmacologia , Cicloeximida/farmacologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Fluorescência Verde , Células HEK293 , Humanos , Lisossomos/metabolismo , Macrolídeos/farmacologia , Camundongos , Inibidor de NF-kappaB alfa , Proteólise , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...